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Transition metal-catalyzed regioselective cycloaddition reaction
of unsaturated compounds is a powerful tool for one-step construc-
tion of substituted benzerieMetalative versions of the reaction
would broaden its synthetic versatility as the resulting aromatic
organometallics should enjoy a variety of transformations. However,
such a reaction has been limited to titanative cyclotrimerization of
alkynes? Although the reaction provides variously substituted
phenyl- and benzyltitanium compounds with perfect chemo- and
regioselectivities, it involves multistep procedures and requires a
leaving group, such as sulfonyl or bromo, in an alkyne molecule.
Herein, we report the regioselective stannylative cycloaddition of
conjugated enynes catalyzed by a palladium complex ha\i(i2y
diphenylphosphinobenzylidene)cyclohexylamitids a ligand to
give variously substituted 3-alkenylphenylstannaBésq 1). The
synthetic potential of the reaction is successfully demonstrated by
a concise synthesis of alcyopterosin N, which has been isolated
recently from sub-Antarctic soft coralcyonium paesslef* The

[(3-allyl)PdCl], (2.5 mol %)

R—SnBug 1 (5.0 mol %)
* 3a+4a 2
2a (3.0 equiv) THF, 50 °C, 24 h
R—S8nBug 3a 4a
Ph—= SnBus (1 0 equiv) 57%2 11o/°b
(Bu3Sn),0 (0.5 equiv) 74%3 119b
(Bu3Sn),0 (0.5 equiv)® 81%7 (81%)4  14%b

@ 119Sn NMR yields based on the Bu3Sn group using Me,Sn as an internal
standard. ? GC yields based on 2a using tridecane as an internal standard.
¢ Cp(allyl)Pd (5.0 mol %), 1 (5.0 mol %), and maleic anhydride (7.5 mol %)
were used as a catalyst. Isolated yield based on the Bu;Sn group.

and typical ligands, such as PRind dppp, or ligandless conditions
retarded the reactioh:1?

With the optimized conditions in hand, we studied the scope of
the reaction and found that a wide variety of functional groups

nonstannylative version of the present reaction has been studied®lérated the reaction conditions (Table 1). Thus, 2-substituted

extensively by Yamamoto and co-workés.

R2 R2
P Pd—1 cat. R3 X
R—= \<, + (BuaSn),0 (1)
Cy
3 X
PPh, Z > Re X=H: 4

2a, 3a, 4a: R', R®=H; R = Me
2b, 3b, 4b: R', R® = H; R? = C;/H,5
2¢, 3c, 4¢: R', R® = H; R2 = (CH,),Ph 2i, 3i, 4i: R' = Hex; R%, R®=H

2d, 3d, 4d: R', R® = H; R2 = (CH,);CH=CH, 2], 3], 4j: R' = CH,OMe; R? R®=H
2e, 3e, 4e: R', R = H; R? = (CH,),C=CSiMe; 2k, 3k, 4k: R" = (CH,)sCN; R% R®=H
2f, 3f, 4f: R, R® = H; R? = (CH,)30Si(t-Bu)Me,

2g, 3g, 49: R', R2 = H; R® = CO,Et
2h, 3h, 4h: R'=Me;R2, R®=H

During our investigation of the alkynylstannylation of 2-methyl-
1-buten-3-yne Za) with tributyl(phenylethynyl)tin using a Pl
catalyst’ we obtained unexpectedly 2-methyl-5-(propen-2-yl)-1-
(tributylstannyl)benzene3@) in 57% yield, as estimated By°Sn
NMR analysis of the crude products (eg®2)one of the expected
alkynylstannylation products or the regioisomers 2d were
detected. GC analysis of the products showed the coproduction of
nonstannylated produeta in 11% yield® As the phenylethynyl
moiety in the stannane reagent was lost, we surveyed various
stannane donotsto find that hexabutyldistannoxane was the
optimum to give3ain 74% yield by'1°Sn NMR. It is worthy to
note that both of the stannyl groups in the stannoxane participate
in the reaction. We further optimized reaction conditions and found
that a combination ofif®-cylcopentadienyl){*-allyl)palladium [Cp-
(allyh)Pd], 1, and maleic anhydride (1:1:1.5, 5 mol % Pd, with
respect to the B4sn group) was the best to gidain 81% isolated
yield. The use of the other derivatives bfgave inferior results,

T Graduate School of Engineering.
* Graduate School of Science.
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Table 1. Stannylative Cycloaddition of Enynes Catalyzed by
Pd—12
entry enyne products yield of 3 (%)° yield of 4 (%)°
1 2b 3b, 4b 65 20
2 2c 3G 4c 71 23 (26Y
3 2d 3d, 4d 64 22
4 2e 3ede 52 12
5 2f 3f, 4f 65 27
6 29 39 49 67 <5
7 2h 3h, 4h 71 s
gf 2i 3i, 4i 67 20
o 2j 3j, 4j 66 10
1 2k 3k, 4k 67 30

aThe reaction was carried out using an enyne (0.90 mmolIBpO
(0.15 mmol), Cp(allyl)Pd (13mol), 1 (15 umol), and maleic anhydride
(23 umol) in THF at 50°C for 24 h.P Isolated yields based on the §8n
group.€ Isolated yields based on the enyA®etermined by GC based on
the enyne® Determined by*H NMR. f The reaction was carried out using
60 umol of Pd-1 catalyst and 9@&mol of maleic anhydride at 88C.

1-buten-3-ynes2b—2f) having an alkenyl, alkynyl, or siloxy group
reacted to give arylstannangb—3f in good yields (entries-15).
Ethyl (2)-2-penten-3-ynoate2() also gave the corresponding
arylstannane3g in 67% yield, together with only a trace amount
of nonstannylated produdyg (entry 6). Enynes having an internal
triple bond and a methoxy or cyano group underwent the reaction
under conditions that employed more catalyst (20 mol %) at 80
°C, and various 2,6-disubstituted 3-stannylstyrenes were produced
in good yields (entries#10). However, 1,2- and 2,4-disubstituted
1-buten-3-ynes, such as 1-ethynylcyclohexene and 2-methyl-1-
decen-4-yne, failed to give the corresponding products.

The reaction was also applicable to cross-cycloaddition reactions
between different enynes or between enynes and di¢nEer

10.1021/ja044429s CCC: $27.50 © 2004 American Chemical Society
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Scheme 1. Stannylative Cross-Cycloaddition of Enynes

H
ex N\ Me
EtO,C X
(1.5 equiv) X = SnBuj (5): 89%2
Hex = H18%°
. Cp(allyl)Pd + X =H:18%
2a (1.5 equiv) (2 5 mol %) EtO,C .~ +3a: 3%C
+ 5 0 mol %) +4a: <1%9
(BU3SI’])20
(0.5 equiv) \
in THF, 50 °C X = SnBuj (6): 85%7
o4 h AN X 3 (6)
(1.5 equ Ph + X =H: 10%
3a: 4%°
Cp(allyl)Pd + °
(5.0 mol %) +4a: <1%9
1 (10 mol %)

alsolated yields based on the §&n group.? Determined by*H NMR
based on2a ©Determined by!°Sn NMR based on the BSn group.
d Determined by GC based &a.

Scheme 2. Synthesis of Alcyopterosin N2

CO.Me CO,Me
99%

7 8

CO.,Me  (d)—(
9% 2%
3 steps

R=Ac 10 g
R=H: alcyopterosm N

aReagents and Conditions: (a) BrgEH(COMe)=CH; (1.1 equiv),
Pd(dbay (5 mol %), PPB (20 mol %), NMP, 100°C, 3 h; (b) DIBAL-H
(3.0 equiv), CuMe (10 mol %), THFHMPA, —50°C, 1 h, then Mel (20
equiv), —10 °C, 25 h; (c) MeCHCMeBH> (5.0 equiv), THF, O°C, 3 h,
then HO,, NaOH aq., rt, 3 h; (d) LiOH (10 equiv), #®—MeOH (9:1), 50
°C, 12 h; (e) AgO (10 equiv), pyridine (5.0 equiv), GiEl,, rt, 9 h; (f)
SOCk (10 equiv), CHCIy, rt to 40°C, 4 h, then AIC4 (1.2 equiv), CHCI,
40 °C, 3 h; (g) KCOs (5.0 equiv), HO—MeOH (1:1), rt, 1 h.

3h—>

87%

83%

example, the reaction d&a with ethyl (2)-2-undecen-4-ynoate or
1,4-diphenylbutadiyne under similar conditiéhsafforded the

corresponding arylstannarie or 6, respectively, in good vyield
(Scheme 1).

The synthetic potential of the reaction is demonstrated by
synthesis of alcyopterosin N starting with 2,6-dimethyl-3-(tributyl-
stannyl)styrene3h) (Scheme 2). Thus, Pd-catalyzed cross-coupling
reaction of3h with ethyl a-bromomethylacrylate gaveé in 87%
yield. Copper-catalyzed 1,4-reductidrof 7 followed by a-meth-
ylation yielded8, which was subjected to hydroboratioaxidation
sequence to provide the alcol®lAcetylation of the hydroxyl group
in 9 was followed by the intramolecular FriedeClafts acylation
and deacetylation to give alcyopterosin N.

In conclusion, we have demonstrated regioselective stannylative

cycloaddition of enynes catalyzed by P# Highly substituted

Supporting Information Available: Detailed experimental pro-

cedures, including spectroscopic and analytical data. This material is
available free of charge via the Internet at http:/pubs.acs.org.
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stage. A referee suggests a mechanism involving interception of a strained
cyclic allene intermediaté&2, which is formed viall (see ref 5c), with

the BuSn group to give a stannylated prod@ctAnalogous reactions of

a strained allene intermediate with a chlorine radical or proton has been
reported: Rodguez, D.; Navarro-Vaquez, A.; Castedo, L.; Doimguez,

D.; Sda C.J. Org. Chem2003 68, 1938-1946, and ref 6a.
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